The txshift
R
package aims to provide researchers in (bio)statistics, epidemiology, health policy, econometrics, and related disciplines with access to cutting-edge statistical methodology for evaluating the causal effects of continuous-valued exposures. txshift
estimates the causal effects of modified treatment policies (or ‘feasible interventions’), which take into account the natural value of an exposure in assigning an intervention level. What’s more, the package provides independent corrections for estimating such effects under two-phase sampling (e.g., case-control) designs, allowing for the methodology to be readily applied in a diversity of real-world experimental and observational studies.